Spectromicroscopy of microbial signatures within human calcifications
نویسندگان
چکیده
منابع مشابه
Signatures of adaptive evolution within human non-coding sequence.
The human genome is often portrayed as consisting of three sequence types, each distinguished by their mode of evolution. Purifying selection is estimated to act on 2.5-5.0% of the genome, whereas virtually all remaining sequence is considered to have evolved neutrally and to be devoid of functionality. The third mode of evolution, positive selection of advantageous changes, is considered rare....
متن کاملMicrobial Lifestyle and Genome Signatures
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimati...
متن کاملExpression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow
Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...
متن کاملMicrobial interactions within a cheese microbial community.
The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to e...
متن کاملPlant immunity triggered by microbial molecular signatures.
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2006
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.20.4.a101-a